

Healthcare Boilers: Creating a Sustainable Future

Presented by: Paul Ingham | November 13, 2023

Introduction

Paul Ingham Vice President, Sales & Marketing

- Thermogenics Inc. Full asset lifecycle solutions provider in the boiler room.
 - Manufacturing Service Rentals
- Chairman of the board at the Canadian Boiler society
- Board member at ABMA
- Company member & technical advisor for Greening Healthcare
- Industry member at CHES

Agenda

- Introductions
- The History and Evolution of boilers in Healthcare
 - Why and when did we use steam
 - Why hot water, and ways to generate it
 - Load Profiles: understanding steam demands in Healthcare Facilities
- Inputs

Learning Objectives

Boilers

- Understand your process and how it works
- Understand the different users of heat energy
- Understanding your hospital's goals according to priority
- Gain a better understanding of applying boilers to your requirements

History & Evolution of Boilers in Healthcare

Why and when did we use steam?

Why steam ?

1. Excellent heat transfer method

2. Easily controlled

How is steam created?

Sensible heat and latent heat

Properties of Steam

Gauge Pressure	Steam Temp (F)	Heat of Sat Liquid (Btu/Ib)	Latent Heat (Btu/lb)	Total Heat of Steam (Btu/lb)	Specific Volume of Sat Liquid (cu ft/lb)	Specific Volume of Sat Steam (cu ft/lb)
0.0	212.00	180.07	970.3	1150.4	0.016715	26.80
1.3	216.32	184.42	967.6	1152.0	0.016746	24.75
2.3	219.44	187.56	965.5	1153.1	0.016768	23.39
5.3	227.96	196.16	960.1	1156.3	0.016830	20.09
10.3	240.07	208.42	952.1	1160.6	0.016922	16.30
15.3	250.33	218.82	945.3	1164.1	0.017004	13.75
20.3	259.28	227.91	939.2	1167.1	0.017078	11.90

Properties of Steam

Traditional Steam Uses

- Building Heat
- Domestic Hot Water
- Humidification
- Lab Steam
- Sterilization
- Laundry
- Kitchens

The Evolution of Boilers

Large Steam Plants

Smaller steam plants split to some hot water boilers

Smaller steam plants with larger hot water plants

Point of use steam generation larger mixed hot water generation

Why Hot Water

Why Hot Water

5

- Hot water operates below 212F (100C)
- Majority of healthcare hot water usage is considered "low grade" hot water
 - Anything below 180F

Why Hot Water

GREENING HEALTH CARE working together for healthier communities

Transition of Thermal Heat Energy Summarized

Load Profiles

GREENING HEALTH CARE

Understanding Steam Demands

What is the load profile of each process:

- Continuous load
- Batch load
- Peak load
- Variable load
- Base load

Peak & Base Load

PEAK

Sudden and short-lived spikes in steam demand, often exceeding the average or baseline demand.

e.g. steam cleaning or sterilization

BASE

Minimum steam load that a system or facility requires to operate continuously.

e.g. sizing and designing steam systems, estimating energy costs and efficiencies.

Continuous Load

Relatively constant steam demand over time.

e.g. building heat

Batch Load

Intermittent steam demand, with periods of high demand followed by periods of no or low demand.

e.g. cooking, drying sterilizing

Variable Load

Fluctuations in steam demand over time, with no clear pattern or regularity.

e.g. processes affected by external factors --- weather, production schedules, or equipment failures.

The Processes VS the Load Profiles

Sterilization (Autoclaves)

Sterilization (CIP)

Humidification

Kitchen

The processes vs the load profile

Domestic Hot Water Generation

Load profile summary

Understanding your seasonal peaks and valleys of the steam load is critical for applying boiler best practices.

- Does your plant have the turndown to handle seasonal low loads?
- Does your plant need steam or can some of these processes be converted to hot water?
- If applying hot water boilers or hot water equipment, how does this impact the remaining steam plant?

Medium sized hospital converted half their load from steam to hot water

Accidental Result

• As a result, the remaining steam boiler plant started seeing extreme cycling (on/off).

Remedy

- They put two smaller boilers in place of a larger one, with higher turn down and improved trim and heat recovery.
- They found a heat sink for ultra low summer loads to top up domestic hot water. This helped reduce cycling.
- They installed lower emission, high turndown burners.

Inputs

GREENING HEALTH CARE

Inputs

Low carbon blended inputs are here now

- RNG
- Biogas / Syngas
- Hydrogen
- Electric
- Electric hybrid

5

Improve what you can NOW

$\mathbf{\tilde{n}}$

Improve what you can NOW

GREENING HEALTH CARE

Best Practices for Energy Efficient Boiler Plant Design, Operation and Control

A GREENING HEALTH CARE RESEARCH GUIDE

Steam eventually blends to hot water

Then we stop using steam for hot water

But.....

5

We're not there yet.

If technologies fail, traditional boilers will always remain a part of the system, one way or another, whether big or small.

MAKE THEM AS EFFICIENT AS POSSIBLE

Thank You

Paul Ingham Vice President, Sales & Marketing Thermogenics Inc.

(E) pingham@thermogenicsboilers.com(C) 416-990-2761

